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Calculating the linear response functions of noninteracting electrons
with a time-dependent Schralinger equation
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An O(N) algorithm is proposed for calculating linear response functions of noninteracting electrons. This
algorithm is simple and suitable to parallel and vector computation. Since it a2@¢N% computational effort
of matrix diagonalization, it requires on®(N) computational efforts, whemd is the dimension of the state
vector. The use of thi®(N) algorithm is very effective since, otherwise, we have to calculate a large number
of eigenstates, i.e., the occupied one-electron states up to the Fermi energy and the unoccupied states with
higher energy. The advantage of this method compared to the Chebyshev polynomial method recently devel-
oped by Wang and Zungét. W. Wang, Phys. Rev. B9, 10 154(1994; L. W. Wang and A. Zunger, Phys.
Rev. Lett.73, 1039(1994] is that our method can calculate linear response functions without any storage of
huge state vectors on external stord@1063-651X97)12607-1

PACS numbgs): 02.70-c, 71.10.Fd, 85.30.Vw, 72.15v

I. INTRODUCTION A. Diagonalize or not diagonalize?

) ) _ ) Let us compare the computational efforts of the conven-
Computing the linear response functio@sd the density  tional diagonalization method and the time-dependent

of states of large systems with thousands of atoms by usingmethod by counting the number of floating point multiplica-

conventional methods requires us to calculate the eigenvations as a function of matrix dimensidw, and show that the

ues and eigenvectors oNXN Hamiltonian matrices time-dependent method is more efficient when large numbers

(N>10P) from the lowest state to the Fermi energy and be-of eigenstates are involved.

yond it. The standard diagonalization routines are too time First, we review the relation between the eigenstate rep-

consuming in treating these problems because their computesentation and the time-dependent representation of linear

ing time is proportional tdN®. Therefore, efficient numerical response functions. The linear response function

algorithms, such as recursive Green’s function methodssa(w+i7) of an observableB due to amonochromatic

[1,2], the Lanczos methodi8—6], the Chebyshev polyno- perturbationH®*=e™'(“*")'A is calculated by the time-

mial expansiof9—17], and conjugate gradient methdds8]  dependent perturbation thedi§6],

have been developed and applied to various problems. .

. In this. paper, we present an efficient method for calculat- yealw+i ﬂ)z(—i)f dtetilerimt

ing the linear response functions of large quantum system. 0

We give up the calculation of each exact eigenstates, instead

we compute linear response functions by integrating the

time-dependent Schdinger equations for a finite period de-

termined by the required energy resolution. Since it avoids ~2dete“(‘“*”’)‘

O(N?) computational efforts of matrix diagonalization, it re- 0

quires onlyO(N) computational efforts for sparse Hamil-

tonian matrices. To realize this scheme, we exploit several

numerical techniques such as the Chebyshev polynomial ex-

pansion of matrix functiong9—17], the random state vectors Where|Eg) andE, are the ground state of the many electron

[17-19, Hamiltonian matrix discretized in real space System and its energy, respectively; and » are the fre-

[20,21], the time-dependent Schtimger equation discretized quency and its resolution, respectivelyz>1/7 is the inte-

in real time[22-33. gration time. We use atomic unit@.u) and indicate the
complex conjugate by c.c. In the numerical calculation of
Eg. (2), we have to discretize it in time, e.g.,

X{(EgleT™M'Be "MA|Eg) —c.c}t, (D)

XIm{(Eg|Be MA|E-e B}, (2

II. TIME-DEPENDENT METHODS
M

_ In this section, we _dgscribe how we reached the conclu- Yea(@+in)=2 E Ateti(o+inmat

sion that we can efficiently calculate the linear response m=0

functions of large quantum systems by using the time- iHmAL HE.-mAt

dependent homogeneous Sainger equations. xIm{(Eq|Be A[Ege" =™, (3)
whereM =T/At is the number of time step3, is the inte-

*Electronic address: tiitaka@postman.riken.go.jp gration time in Eq(2), andAt is the width of the time step.
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TABLE I. Comparison of the diagonalization method and the time-dependent method.

Diagonalization method

& (EJBENENAE) < (EJAEnEBIEY

et~ 2 T E By & (o in B Ey
Dense matrix Sparse matrix
Calculation Computation Memory Computation Memory
Em.|Em) N3 N? NE N?
(EglA|E ) N? N N N
Sm N N N N

Time-dependent method

M
xBA(w+in)=2mE:0 AteH i+ Egtinmiym(E B HMAA|E )

Dense matrix Sparse matrix
Calculation Computation Memory Computation Memory
e HMABIE) MN? N2 MN N
(EglAe™MMAIBIE ) N2 N N N
=M, M 1 M 1

On the other hand, we obtain the eigenstate representation Inyathematically equivalent to the Schinger equations in

insertingl ==N_,|E)(En| into Eq. (1), the eigenstate representation, use of the Rthger equa-
N tion [22—35 has the advantage that we can exploit well de-
. (Eg|BIEm){EmlA[Ey) veloped concepts and the formalism of quantum theory. It is
Xea(0t ’7)=m2=1 (w+in)—(En—Ey) especially true when we want to deal with quantum systems.
\ Therefore, in this paper, we only study the Scinger equa-
(EglAIEm)(En|B|Eg) @ tions.

=1 (0+in)+(En—Eg)
C. Homogeneous or inhomogeneous?
Next, we show the estimated computational efforts in
Table I. The diagonalization method for tiNex N Hamil-
tonian matrix requires the memory space@fN?) and the
computational effort o©(N®). On the other hand, the time-
dependent method requires the memory spad@(®f?) and

In this subsection we show that inhomogeneous time-
dependent equations are more inefficient than homogeneous
ones. This conclusion is valid not only for the Sdtiirmger
equation(particle source metho®8]) but also for the New-
ton equation(forced oscillator method37-41]) because

the computational effort dD(MN?), whereM is the number oth equations are equivalent in the eigenstate representa-
of time steps determined by the required energy resolutior![i:On q q 9 P

(see Sec. Il € By choosing an appropriate basis set, we can™ - . . .
make the Hamiltonian a sparse matrix having oflyN) de L:; dlé?]t ?negtr;ﬁ) dtr;)e ﬁ]%mr?u;?é'gpilf f;fl‘;rt tOf tk_:_? Attlme—
nonzero matrix elemen{f0,25. This results in the compu- P y u ' stips :

tational effort and the memory space of the time—dependen-[he.n th? computational effot i_s deterr_nined by th_e inte-
method being reduced ©(MN) and O(N), respectively. gration timeT, because the maximum width of the time step

Thus the time-dependent method can be more efficient thagf :irqitefdthby theiﬁa(rjnpling the;)_[]eng_g] indtepenltqjenltdog the h
the diagonalization method in the largelimit. ctait of the MEtod we use. 1he ime step should be muc

smaller than the inverse of the bandwidthEg to reproduce
the correct spectrum since, otherwise, according to(Bqg.
we cannot distinguish the eigenvaly&g]

Table 1l classifies various time-dependent methods in
terms of the kinds of equations and homogeneity. Though
the Newton equations of harmonic oscillatdB7-41 are

B. Newton or Schradinger?

E.=E 2mk k=1,2 5
B AT (k=1,2,..)). 5

TABLE Il. Comparison of time-dependent equations.

Equation Homogeneous Inhomogeneous

Classical mechanics Newton Harmonic oscillator Forced oscil[@&6+41]
Quantum mechanics Scldinger TDSE[22-27,29,31,32,35 Particle sourcg28]
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In the following, we evaluatel for homogeneous and _ 1 (T, oot
inhomogeneous Schdimger equations to calculate the real- |1 To)= T_fo dt'|¢;tye*! e in
time Green’s functions at many frequencies,=lAw, 2
[=0,+£1,=2,...,within a required relative accurac§. It 1 (T, o )
turns out thatT of inhomogeneous equations can be much =T dt'Z G(w+in)j)e et
longer than that of homogeneous equations. This conclusion 270
applies to the calculation of the linear response functions (19
also.
First let us try to calculate the Green’s function by solving .
the homogeneous equation, =G(wp +in)lj)
i[efi(wpwp)Tz_ 1]
d + 2 Glw+in)lj) (15
i&|¢;t>:H|¢?t>1 (6) £l To(w—wr)
with the initial condition|¢;t=0)=|j). The auxiliary vec- ~G(w Fin)lj), (16)

tors are calculated as

where we have neglected the second term of @§) by

. . .
~ T\ N pep I\ (o +i )t assuming thal, is large enough so that, A w>1/6. There-
61 T)=( ')JO dt'|git)er : @) fore, M becomes
T iHt' +i(w +igt! 1
=(—1i - i @ Ty ~—
(i) | ave e , ® Mo~ s a7
ot me . which can be much larger thavl; whenAw is small.
= oo ), 9 9 L
1 I1l. NONINTERACTING ELECTRONS
~m|j>, (10 In this section, we apply the time-dependent homoge-

neous Schrdinger equation to efficiently calculate the linear
response functions and density of states of noninteracting
=G(w+in)|j), (11 electron systems, since it is well known that there exist wide
and practically important areas in condensed matter physics
where noninteracting electron models are useful to predict
various physical properties. Hereafter we assume that the
system is described by the one-electron Hamiltonian,

where we have neglected the second term of (Bgby as-
suming T is large enough so that™ 7"<§. Therefore, we
estimateM for the homogeneous equation as

T _—In6

1. .
~— = H=—p2+V(r). 18
My~ 5 DAL SP7+V(r) (18

Next let us calculate the Green’s function by solving the

. . . A. Linear response function
inhomogeneous Schiinger equation,

For noninteracting electrons, the linear response function
(4) can be rewritten by using the one-particle eigenstates as

L
IE ei(w|+i77)t) G(t), (12) [36]
=

Sl #0=Hlg0+ )
G Bli)i1A)

Ei<Er g>E (0 +in)—(E—E)

Xea(w)=
with the initial condition| ¢;t=0)=0. The solution at large
T becomes (i|Alj)(iIBIi)
E<Ef E>E (0 +in)+(E—E)’

(19

[Ty =2 Glay+inlie 7T, (13
|
whereE; is the Fermi energy, and) and|j) are the occu-
o - - pied and empty one-particle states, respectively. This for-
where T satisfiese””'<4. Then the auxiliary vectors mula can be rewritten again in time-dependent representation
|#);T,) are defined as as
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Xealo+in) (20) 6 ; :
T a
:(_I)j dt E e+i(w+i77)t ( )
0 EisE T nu:r;\ericai 7
Ej>E¢ exact - --
x{(ile"MBe M )lA-ccy, @y 3. . ]

:(_l)det 2 e+i(w+i77)t
0 E g

x{(il6(Es—H)e"'Be~ M o(H—Ey)]])
X(j|Ali)~-c.c},

T ) )
:<<f dte+|(w+|7;)tK(t)>>'
0

where the double brackets indicate the statistical average
over random vector$d) and K(t) is the time correlation
function defined by

(22

(23

K(t)=2 Im{®|o(E;—H)e"MBe M o(H—E)A|D).
(24)

Equations(23) and (24) are the main result of this paper.
Note that calculating the trace over the initial staiesby
using random vectors reduces the computational effort by a
factor of N. As the result, the computational effort still re-
mainsO(N) in spite of the double summation in EG.9).

In the above equations, we have introduced several nu-
merical techniques. First, the time-dependent state vectors,

e Mo(H—E()A|D)
e MO(Ei—H)|P) (25)
are calculated by the leap frog methi@p—-25,28

|pit+Aty=—2i AtH| ;t)+| ;t— At), (26)

Re g(w)

Im &w)

-4

0 0.05 0.1

0.15 0.2

o (a.u.)

FIG. 1. €,(w) of four electrons in a three-dimensional har-

where the Hamiltonian matrix is discretized by finite differ- monic oscillator calculated with 32cubic meshes,wy=0.1,

ence[20,2]]

Naiff

02
77 _ D

~2CY 2Ngifs
A 2 Cn ¢(x+nAX,y,2)+O(Ax?Ndirr),

(27)

Due to this discretization, the Hamiltonian matrix becomes
sparse and the matrix vector multiplication in E26) can be

7=10"%; (a) real part,(b) imaginary part.

K
0(X>|¢>wk§1 Tk 1(X)| @),

done with O(N) computational complexity. We use the tor recursion formulas

Ngiss=4 formula in this paper.

(29

where each term on the right-hand side is calculated by vec-

Second, the matrix step function for a normalized Hermit- To(X)|p)=|¢), (30)
ian matrixX whose eigenvalueX; are in the rangé—1,1] is
defined in its eigenstate basis TL(X)| ) =X| &), (31)

e<x>=; |X;) 00X (X (28)

Tn+1(X)[$) =2XTo(X)[$) = Th_1(X)[)n=1. (32

By using this step function, we can avoid the difficulties in To use this matrix function in Ed25), we should normalize
the partial sum in Eq(20). Operation of this function on an the Hamiltonian matrix so thaX=(H—Es)/Eom has ei-
arbitrary vector|¢) is numerically approximated by the genvalues in the rande-1,1].

Chebyshev polynomial expansi¢@—17], Thirdly, we define random vectors with random phase by
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Re g(w)
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FIG. 2. e,(w) of silicon crystal consisting of 2 Si atoms in a
cubic supercell of 1Bunit cells. Each unit cell is divided into®8
cubic meshes. The energy resolutionzis-0.05 eV. We used the
empirical local pseudopotential in R¢l.4]. (a) real part,(b) imagi-
nary part.

N
|GI>>=n§1 Inyetidn, (33

where |n) are basis vectors and-—-w<¢,<m,
(n=1,... N) are uniform random variables that satisfy

((e”1¢n'eln))=4,,.. Then we can derive various useful
identities such as

(O|D)=2, (B|n)(n|d)=> e '%nelén=N, (34
<<|<I>><<I>|>>=Z In")((e'#ne'?n))(n|
=2 [n)nl=1, (35)
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FIG. 3. Density of states of 3D harmonic oscillator calculated

with 32° cubic mesheswy=0.1, andy=10"*, and analytical re-
sult.

((@|AJ@)))= 2 (&= *))(n’|A]n)

:; <n|A|n)=tr[A]=; <Em|A|Em>-
(36)

Equation(34) shows that each random vector is normalized
to N, the number of one-particle eigenstates. Equa(RB)
shows that random vectors have normalized completeness.
Equation(36) shows that the expectation value of an opera-
tor by random vectors gives the trace of the operator. We
used this identity to calculate the trace oyierin Egs.(23)
and(24). These random vectors with randgrhaseare more

DOS [ 1/(eV atom) ]

o (eV)

FIG. 4. Density of states of silicon crystal consisting df Si
atoms in 18 unit cells. Each unit cell is divided into*8cubic
meshes. The energy resolutionzs=0.05 eV.
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FIG. 5. A typical structure of two-dimensional photonic crystal
cavities used in our calculation.

useful in calculating expectation values than random vectors
with randomamplitudesince each random vectors are auto-
matically normalized.

Finally the formula for numerical calculation of polariz-
ability function xg,(w) with @, B=X,y,z becomes

Normalized Frequency w&2mc

T .
X,ea(w)~< < fo dt e_”t(e+'“’t—5ﬁa)|<(t)> > (37

FIG. 6. Calculated density of states as a function of frequency
and wave number.

K(t)= W|TT]<(I)|0(Ef—H)eﬂ'_“[ﬁ)ﬁ(i‘ilHt
_ _ the exact result neaw=0 is due to finitey. The result
X O(Beur—H)6(H=Ep)pa|®), 38 shows that our method works very well fars> 7.
whereV is the volume of the supercell, and the dipole mo-  Figure 2 shows the dielectric function with energy reso-
ment operators lution =0.05 eV of silicon crystal consisting of'2Si at-
oms in a cubic supercell of $aunit cells. Each unit cell is
GIAlY=(j[xal1), (39 divided into & cubic meshes. One random vector is used.

We used the empirical local pseudopotential in Héf|.
I . The result agrees with experimental results and other theo-
(ilBlj)= EVAL Xgl). (40 retical calculationg44,45.

In some cases we may want to ask which part of the real
are modified to momentum operators by partial integrationspace the electrons contributing to the linear response func-
We also inserted a low energy projection operatortion come from. We can answer this question by calculating
0(E.,+—H) into Eg. (38) to eliminate unphysical high en- the linear response function by restricting the range of the
ergy components of the random vectors. This filter is muchtrace in Eq.(37) within a real space domai. This can be
more effective than the quadratic filter used[i®]. In cal- done by replacing|®) by |®')y=Pp|®), where Pp
culating very large systems, we need only few random vec=ZX,_p|n)(n| is the real space projection operator ofito
tors for statistical averaging, since the fluctuation becomes
smaller as the system side becomes largef28].

Figure 1 shows the dielectric functione,(w) B. Density of states
=1+4myx,(w) of four electrons in the three-dimensional  The density of states of the system can be calculated as
(3D) harmonic potential [32]
. (wor)? -1 -1
V(i) =—3 (4D ple)= —3 IMGpylw+in)=—Im{t{G(w+in]}
n

: : 4 (43)
calculated with 32 cubic meshespy=0.1, »=10"%. Three

random vectors are used. The analytical repid
by combining Eqs(11) and(36).
4mNe 1 42 Figure 3 shows the numerical and analytical results of the
(42 density of states in the 3D harmonic potential witt? 8Rbic
mesheswy,=0.1, and»=10"3. Three random vectors are
is also shown for comparison, whek&, is the number of used. Figure 4 shows the density of states of silicon crystal
electrons in the supercell of volumé The deviation from  consisting of 2° Si atoms in a cubic supercell of 1@nit

€ =1+ -
ol @) V wg—wz—lwn
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cells. Each unit cell is divided into8cubic meshes. The for E mode, whereE, is the z component of the electric

energy resolution isy=0.05 eV. Three random vectors are field.

used. Figure 5 shows a typical structure of two-dimensional
We can also calculate thecal density of states integrated photonic crystal cavities used in our calculation, and Fig. 6

in a given domairD by using the real space projection op- shows the calculated density of states as a function of the

eratorPp to restrict the summation in E¢33) within D, frequency and wave number.

-1
pD(w)=72 M Gy (-+i7) IV. SUMMARY
neb In this paper we proposed a numerical method suitable for
-1 calculating the linear response functio@®d the density of

= —Im{t[PpG(w+in)]}. (44) state$ of noninteracting electrons, in which the sum over the

™ initial one-particle states is efficiently calculated by using
Photonic band structures in two-dimensional periodicra”dom vectors. The ad\_/antage of this method, compared to
structure of dielectric materig6—4§ can also be calcu- e Chebyshev polynomial method by Wang and Zunger to

lated by using Eqs43) or (44) since the Maxwell equations calculate optical absorption of noninteracting glectrbnﬂ,
of this system are reduced to the Sdirger equation with 'S that our method can calculate not only the imaginary part
position dependent mass, i.e. but also the real part of the linear response functions at the

same time, and that it can calculate them without any input

w? output(l/O) of state vectors on external storage. As a result,
HHz(X,y) = 2 HXY) =EH,(x.y), (45 our method can calculate much larger systems than Wang's
method. The Chebyshev polynomial method of degkke
9 -1 9 o9 -1 9 should storeO(M) state vectors of siz&©(N) on external

X €(Xy) ax | ay exy) 9y’

(46) storage to make the table 6f(M?) generalized Chebyshev
momentsA, v and may take a very long I/O time. The

for H mode, whereH, is thez component of the magnetic application of this method to photonic band structures, sili-

field, and con nanocrystallites, and periodic structures of chaotic sys-

tems will be presented elsewhdd9-51].
2

S

HEL(X,y)= c E.(X,y)=EEJ«x,y), (47) ACKNOWLEDGMENTS
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