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Calculating the linear response functions of noninteracting electrons
with a time-dependent Schrödinger equation

Toshiaki Iitaka,* Shintaro Nomura, Hideki Hirayama, Xinwei Zhao, Yoshinobu Aoyagi, and Takuo Sugano
Nanoelectronics Materials Group, Frontier Research Program, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-01, Japan

~Received 8 July 1996; revised manuscript received 18 February 1997!

An O(N) algorithm is proposed for calculating linear response functions of noninteracting electrons. This
algorithm is simple and suitable to parallel and vector computation. Since it avoidsO(N3) computational effort
of matrix diagonalization, it requires onlyO(N) computational efforts, whereN is the dimension of the state
vector. The use of thisO(N) algorithm is very effective since, otherwise, we have to calculate a large number
of eigenstates, i.e., the occupied one-electron states up to the Fermi energy and the unoccupied states with
higher energy. The advantage of this method compared to the Chebyshev polynomial method recently devel-
oped by Wang and Zunger@L. W. Wang, Phys. Rev. B49, 10 154~1994!; L. W. Wang and A. Zunger, Phys.
Rev. Lett.73, 1039~1994!# is that our method can calculate linear response functions without any storage of
huge state vectors on external storage.@S1063-651X~97!12607-1#

PACS number~s!: 02.70.2c, 71.10.Fd, 85.30.Vw, 72.15.2v
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I. INTRODUCTION

Computing the linear response functions~and the density
of states! of large systems with thousands of atoms by us
conventional methods requires us to calculate the eigen
ues and eigenvectors ofN3N Hamiltonian matrices
(N@106) from the lowest state to the Fermi energy and b
yond it. The standard diagonalization routines are too ti
consuming in treating these problems because their com
ing time is proportional toN3. Therefore, efficient numerica
algorithms, such as recursive Green’s function meth
@1,2#, the Lanczos methods@3–6#, the Chebyshev polyno
mial expansion@9–17#, and conjugate gradient methods@7,8#
have been developed and applied to various problems.

In this paper, we present an efficient method for calcu
ing the linear response functions of large quantum syst
We give up the calculation of each exact eigenstates, ins
we compute linear response functions by integrating
time-dependent Schro¨dinger equations for a finite period de
termined by the required energy resolution. Since it avo
O(N3) computational efforts of matrix diagonalization, it re
quires onlyO(N) computational efforts for sparse Hami
tonian matrices. To realize this scheme, we exploit sev
numerical techniques such as the Chebyshev polynomia
pansion of matrix functions@9–17#, the random state vector
@17–19#, Hamiltonian matrix discretized in real spac
@20,21#, the time-dependent Schro¨dinger equation discretize
in real time@22–35#.

II. TIME-DEPENDENT METHODS

In this section, we describe how we reached the con
sion that we can efficiently calculate the linear respo
functions of large quantum systems by using the tim
dependent homogeneous Schro¨dinger equations.

*Electronic address: tiitaka@postman.riken.go.jp
561063-651X/97/56~1!/1222~8!/$10.00
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A. Diagonalize or not diagonalize?

Let us compare the computational efforts of the conv
tional diagonalization method and the time-depend
method by counting the number of floating point multiplic
tions as a function of matrix dimensionN, and show that the
time-dependent method is more efficient when large numb
of eigenstates are involved.

First, we review the relation between the eigenstate r
resentation and the time-dependent representation of li
response functions. The linear response funct
xBA(v1 ih) of an observableB due to amonochromatic
perturbationHex5e2 i (v1 ih)tA is calculated by the time-
dependent perturbation theory@36#,

xBA~v1 ih!5~2 i !E
0

`

dt e1 i ~v1 ih!t

3$^Egue1 iHtBe2 iHtAuEg&2c.c.%, ~1!

'2E
0

T

dt e1 i ~v1 ih!t

3Im$^EguBe2 iHtAuEg&e
1 iEgt%, ~2!

whereuEg& andEg are the ground state of the many electr
system and its energy, respectively;v and h are the fre-
quency and its resolution, respectively;T@1/h is the inte-
gration time. We use atomic units~a.u.! and indicate the
complex conjugate by c.c. In the numerical calculation
Eq. ~2!, we have to discretize it in time, e.g.,

xBA~v1 ih!52(
m50

M

Dte1 i ~v1 ih!mDt

3Im$^EguBe2 iHmDtAuEg&e
1 iEgmDt%, ~3!

whereM5T/Dt is the number of time steps,T is the inte-
gration time in Eq.~2!, andDt is the width of the time step
1222 © 1997 The American Physical Society
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TABLE I. Comparison of the diagonalization method and the time-dependent method.

Diagonalization method

xBA~v1ih!5(
m51

N
^EguBuEm&^EmuAuEg&
~v1ih!2~Em2Eg!

2(
m51

N
^EguAuEm&^EmuBuEg&
~v1ih!1~Em2Eg!

Dense matrix Sparse matrix
Calculation Computation Memory Computation Memory
Em ,uEm& N3 N2 N3 N2

^EguAuEm& N2 N N N
(m N N N N

Time-dependent method

xBA~v1ih!52(
m50

M

Dte1i~v1Eg1ih!mDtIm^EguBe2 iHmDtAuEg&

Dense matrix Sparse matrix
Calculation Computation Memory Computation Memory
e2 iHmDtBuEg& MN2 N2 MN N

^EguAe2 iHmDtBuEg& N2 N N N

(m50
M M 1 M 1
n
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On the other hand, we obtain the eigenstate representatio
insertingI5(m51

N uEm&^Emu into Eq. ~1!,

xBA~v1 ih!5 (
m51

N
^EguBuEm&^EmuAuEg&
~v1 ih!2~Em2Eg!

2 (
m51

N
^EguAuEm&^EmuBuEg&
~v1 ih!1~Em2Eg!

. ~4!

Next, we show the estimated computational efforts
Table I. The diagonalization method for theN3N Hamil-
tonian matrix requires the memory space ofO(N2) and the
computational effort ofO(N3). On the other hand, the time
dependent method requires the memory space ofO(N2) and
the computational effort ofO(MN2), whereM is the number
of time steps determined by the required energy resolu
~see Sec. II C!. By choosing an appropriate basis set, we c
make the Hamiltonian a sparse matrix having onlyO(N)
nonzero matrix elements@20,25#. This results in the compu
tational effort and the memory space of the time-depend
method being reduced toO(MN) andO(N), respectively.
Thus the time-dependent method can be more efficient
the diagonalization method in the largeN limit.

B. Newton or Schrödinger?

Table II classifies various time-dependent methods
terms of the kinds of equations and homogeneity. Thou
the Newton equations of harmonic oscillators@37–41# are
by

n
n

nt

an

n
h

mathematically equivalent to the Schro¨dinger equations in
the eigenstate representation, use of the Schro¨dinger equa-
tion @22–35# has the advantage that we can exploit well d
veloped concepts and the formalism of quantum theory. I
especially true when we want to deal with quantum syste
Therefore, in this paper, we only study the Schro¨dinger equa-
tions.

C. Homogeneous or inhomogeneous?

In this subsection we show that inhomogeneous tim
dependent equations are more inefficient than homogen
ones. This conclusion is valid not only for the Schro¨dinger
equation~particle source method@28#! but also for the New-
ton equation~forced oscillator method@37–41#! because
both equations are equivalent in the eigenstate represe
tion.

Let us define the computational effort of the tim
dependent method by the number of time stepsM5T/Dt.
Then the computational effortM is determined by the inte
gration timeT, because the maximum width of the time st
is limited by thesampling theorem@9# independent of the
detail of the method we use. The time step should be m
smaller than the inverse of the bandwidthp/EB to reproduce
the correct spectrum since, otherwise, according to Eq.~3!
we cannot distinguish the eigenvalues@30#

Ek5E1
2pk

Dt
~k51,2, . . .!. ~5!
TABLE II. Comparison of time-dependent equations.

Equation Homogeneous Inhomogeneous

Classical mechanics Newton Harmonic oscillator Forced oscillator@37–41#
Quantum mechanics Schro¨dinger TDSE@22–27,29,31,32,35# Particle source@28#
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In the following, we evaluateT for homogeneous and
inhomogeneous Schro¨dinger equations to calculate the rea
time Green’s functions at many frequencies,v l5 lDv,
l50,61,62, . . . , within a required relative accuracyd. It
turns out thatT of inhomogeneous equations can be mu
longer than that of homogeneous equations. This conclu
applies to the calculation of the linear response functi
also.

First let us try to calculate the Green’s function by solvi
the homogeneous equation,

i
d

dt
uf;t&5Huf;t&, ~6!

with the initial conditionuf;t50&5u j &. The auxiliary vec-
tors are calculated as

uf̃ l ;T&5~2 i !E
0

T

dt8uf;t8&e1 i ~v l1 ih!t8, ~7!

5~2 i !E
0

T

dt8e2 iHt 8u j &e1 i ~v l1 ih!t8, ~8!

5
1

v l1 ih2H
@12ei ~v l1 ih2H !T#u j &, ~9!

'
1

v l1 ih2H
u j &, ~10!

5G~v l1 ih!u j & , ~11!

where we have neglected the second term of Eq.~9! by as-
sumingT is large enough so thate2hT,d. Therefore, we
estimateM for the homogeneous equation as

M1'
T

Dt
5

2 lnd

hDt
.

Next let us calculate the Green’s function by solving t
inhomogeneous Schro¨dinger equation,

i
d

dt
uf;t&5Huf;t&1u j &S (

l52L

L

e2 i ~v l1 ih!tD u~ t !, ~12!

with the initial conditionuf;t50&50. The solution at large
T becomes

uf;T&'(
l
G~v l1 ih!u j &e2 i ~v l1 ih!T, ~13!

where T satisfies e2hT!d. Then the auxiliary vectors
uf̃ l ;T2& are defined as
h
on
s

uf̃ l 8;T2&5
1

T2
E
0

T2
dt8uf;t&e1 i ~v l 81 ih!t8

5
1

T2
E
0

T2
dt8(

l
G~v l1 ih!u j &e2 i ~v l2v l 8!t8,

~14!

5G~v l 81 ih!u j &

1 (
lÞ l 8

G~v l1 ih!u j &
i @e2 i ~v l2v l 8!T221#

T2~v l2v l 8!
, ~15!

'G~v l 81 ih!u j &, ~16!

where we have neglected the second term of Eq.~15! by
assuming thatT2 is large enough so thatT2Dv@1/d. There-
fore,M becomes

M2'
1

DvDtd
, ~17!

which can be much larger thanM1 whenDv is small.

III. NONINTERACTING ELECTRONS

In this section, we apply the time-dependent homo
neous Schro¨dinger equation to efficiently calculate the line
response functions and density of states of noninterac
electron systems, since it is well known that there exist w
and practically important areas in condensed matter phy
where noninteracting electron models are useful to pre
various physical properties. Hereafter we assume that
system is described by the one-electron Hamiltonian,

H5
1

2
pW 21V~rW !. ~18!

A. Linear response function

For noninteracting electrons, the linear response func
~4! can be rewritten by using the one-particle eigenstate
@36#

xBA~v!5 (
Ei<Ef ,Ej.Ef

^ i uBu j &^ j uAu i &
~v1 ih!2~Ej2Ei !

2 (
Ei<Ef ,Ej.Ef

^ i uAu j &^ j uBu i &
~v1 ih!1~Ej2Ei !

, ~19!

whereEf is the Fermi energy, andu i & and u j & are the occu-
pied and empty one-particle states, respectively. This
mula can be rewritten again in time-dependent representa
as
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xBA~v1 ih! ~20!

5~2 i !E
0

T

dt (
Ei<Ef
Ej.Ef

e1 i ~v1 ih!t

3$^ i ue1 iHtBe2 iHt u j &^ j uAu i &2c.c.%, ~21!

5~2 i !E
0

T

dt (
Ei ,Ej

e1 i ~v1 ih!t

3$^ i uu~Ef2H !e1 iHtBe2 iHtu~H2Ef !u j &

3^ j uAu i &2c.c.%, ~22!

5K K E
0

T

dte1 i ~v1 ih!tK~ t !L L , ~23!

where the double brackets indicate the statistical aver
over random vectorsuF& and K(t) is the time correlation
function defined by

K~ t !52 Im^Fuu~Ef2H !e1 iHtBe2 iHtu~H2Ef !AuF&.
~24!

Equations~23! and ~24! are the main result of this pape
Note that calculating the trace over the initial statesu i & by
using random vectors reduces the computational effort b
factor ofN. As the result, the computational effort still re
mainsO(N) in spite of the double summation in Eq.~19!.

In the above equations, we have introduced several
merical techniques. First, the time-dependent state vecto

e2 iHtu~H2Ef !AuF&

e2 iHtu~Ef2H !uF& ~25!

are calculated by the leap frog method@22–25,28#

uf;t1Dt&522iDtHuf;t&1uf;t2Dt&, ~26!

where the Hamiltonian matrix is discretized by finite diffe
ence@20,21#

] 2f

]x2
5 (

n52Ndi f f

Ndi f f 1

Dx2
Cn

~2!f~x1nDx,y,z!1O~Dx2Ndi f f !.

~27!

Due to this discretization, the Hamiltonian matrix becom
sparse and the matrix vector multiplication in Eq.~26! can be
done with O(N) computational complexity. We use th
Ndi f f54 formula in this paper.

Second, the matrix step function for a normalized Herm
ian matrixX whose eigenvaluesXi are in the range@21,1# is
defined in its eigenstate basis

u~X!5(
Xi

uXi&u~Xi !^Xi u. ~28!

By using this step function, we can avoid the difficulties
the partial sum in Eq.~20!. Operation of this function on an
arbitrary vector uf& is numerically approximated by th
Chebyshev polynomial expansion@9–17#,
ge

a

u-
,

s

-

u~X!uf&'(
k51

K

ckTk21~X!uf&, ~29!

where each term on the right-hand side is calculated by v
tor recursion formulas

T0~X!uf&5uf&, ~30!

T1~X!uf&5Xuf&, ~31!

Tn11~X!uf&52XTn~X!uf&2Tn21~X!uf&n>1. ~32!

To use this matrix function in Eq.~25!, we should normalize
the Hamiltonian matrix so thatX5(H2Ef)/Enorm has ei-
genvalues in the range@21,1#.

Thirdly, we define random vectors with random phase

FIG. 1. exx(v) of four electrons in a three-dimensional ha
monic oscillator calculated with 323 cubic meshes,v050.1,
h51024; ~a! real part,~b! imaginary part.
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uF&5 (
n51

N

un&e1 ifn, ~33!

where un& are basis vectors and2p,fn<p,
(n51, . . . ,N) are uniform random variables that satis
^^e2 ifn8eifn&&5dn8n . Then we can derive various usef
identities such as

^FuF&5(
n

^Fun&^nuF&5(
n

e2 ifneifn5N, ~34!

^^uF&^Fu&&5(
n8n

un8&^^e2 ifn8eifn&&^nu

5(
n

un&^nu5I , ~35!

FIG. 2. exx(v) of silicon crystal consisting of 2
15 Si atoms in a

cubic supercell of 163 unit cells. Each unit cell is divided into 83

cubic meshes. The energy resolution ish50.05 eV. We used the
empirical local pseudopotential in Ref.@14#. ~a! real part,~b! imagi-
nary part.
^^^FuAuF&&&5 (
n,n8

^^ei ~fn2fn8!&&^n8uAun&

5(
n

^nuAun&5tr@A#5(
Em

^EmuAuEm&.

~36!

Equation~34! shows that each random vector is normaliz
to N, the number of one-particle eigenstates. Equation~35!
shows that random vectors have normalized completen
Equation~36! shows that the expectation value of an ope
tor by random vectors gives the trace of the operator.
used this identity to calculate the trace overu i & in Eqs.~23!
and~24!. These random vectors with randomphaseare more

FIG. 3. Density of states of 3D harmonic oscillator calculat
with 323 cubic meshes,v050.1, andh51024, and analytical re-
sult.

FIG. 4. Density of states of silicon crystal consisting of 215 Si
atoms in 163 unit cells. Each unit cell is divided into 83 cubic
meshes. The energy resolution ish50.05 eV.



to
to

-

o

on
to
-
c

e
e

al

o-

ed.

eo-

eal
nc-
ing
the

as

the

e
stal

tal

ncy
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useful in calculating expectation values than random vec
with randomamplitudesince each random vectors are au
matically normalized.

Finally the formula for numerical calculation of polariz
ability functionxba(v) with a,b5x,y,z becomes

xba~v!'K K E
0

T

dt e2ht~e1 ivt2dba!K~ t !L L , ~37!

K~ t !5
22

V~v1 ih!2
Im^Fuu~Ef2H !e1 iHtpbe

2 iHt

3u~Ecut2H !u~H2Ef !pauF&, ~38!

whereV is the volume of the supercell, and the dipole m
ment operators

^ j uAu i &5^ j uxau i &, ~39!

^ i uBu j &5
21

V
^ i uxbu j &, ~40!

are modified to momentum operators by partial integrati
We also inserted a low energy projection opera
u(Ecut2H) into Eq. ~38! to eliminate unphysical high en
ergy components of the random vectors. This filter is mu
more effective than the quadratic filter used in@14#. In cal-
culating very large systems, we need only few random v
tors for statistical averaging, since the fluctuation becom
smaller as the system sizeN becomes larger@28#.

Figure 1 shows the dielectric functionexx(v)
5114pxxx(v) of four electrons in the three-dimension
~3D! harmonic potential

V~rW !5
~v0r !2

2
~41!

calculated with 323 cubic meshes,v050.1,h51024. Three
random vectors are used. The analytical result@42#

exx~v!511
4pNe

V

1

v0
22v22 ivh

~42!

is also shown for comparison, whereNe is the number of
electrons in the supercell of volumeV. The deviation from

FIG. 5. A typical structure of two-dimensional photonic crys
cavities used in our calculation.
rs
-

-

.
r

h

c-
s

the exact result nearv50 is due to finiteh. The result
shows that our method works very well forv@h.

Figure 2 shows the dielectric function with energy res
lution h50.05 eV of silicon crystal consisting of 215 Si at-
oms in a cubic supercell of 163 unit cells. Each unit cell is
divided into 83 cubic meshes. One random vector is us
We used the empirical local pseudopotential in Ref.@43#.
The result agrees with experimental results and other th
retical calculations@44,45#.

In some cases we may want to ask which part of the r
space the electrons contributing to the linear response fu
tion come from. We can answer this question by calculat
the linear response function by restricting the range of
trace in Eq.~37! within a real space domainD. This can be
done by replacing uF& by uF8&5PDuF&, where PD
5(nPDun&^nu is the real space projection operator ontoD.

B. Density of states

The density of states of the system can be calculated
@32#

r~v!5
21

p (
n

Im Gnn~v1 ih!5
21

p
Im $tr@G~v1 ih!#%

~43!

by combining Eqs.~11! and ~36!.
Figure 3 shows the numerical and analytical results of

density of states in the 3D harmonic potential with 323 cubic
meshes,v050.1, andh51023. Three random vectors ar
used. Figure 4 shows the density of states of silicon cry
consisting of 215 Si atoms in a cubic supercell of 163 unit

FIG. 6. Calculated density of states as a function of freque
and wave number.
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1228 56TOSHIAKI IITAKA et al.
cells. Each unit cell is divided into 83 cubic meshes. The
energy resolution ish50.05 eV. Three random vectors a
used.

We can also calculate thelocal density of states integrate
in a given domainD by using the real space projection o
eratorPD to restrict the summation in Eq.~33! within D,

rD~v!5
21

p (
nPD

Im Gnn~v1 ih!

5
21

p
Im $tr@PDG~v1 ih!#%. ~44!

Photonic band structures in two-dimensional perio
structure of dielectric material@46–48# can also be calcu
lated by using Eqs.~43! or ~44! since the Maxwell equation
of this system are reduced to the Schro¨dinger equation with
position dependent mass, i.e.,

HHz~x,y!5
v2

c2
Hz~x,y!5EHz~x,y!, ~45!

H5
]

]x

21

e~x,y!

]

]x
1

]

]y

21

e~x,y!

]

]y
, ~46!

for H mode, whereHz is thez component of the magneti
field, and

HEz~x,y!5
v2

c2
Ez~x,y!5EEz~x,y!, ~47!

H5
21

e~x,y!H ]2

]x2
1

]2

]y2J ~48!
D

e

m

.

. B
c

for E mode, whereEz is the z component of the electric
field.

Figure 5 shows a typical structure of two-dimension
photonic crystal cavities used in our calculation, and Fig
shows the calculated density of states as a function of
frequency and wave number.

IV. SUMMARY

In this paper we proposed a numerical method suitable
calculating the linear response functions~and the density of
states! of noninteracting electrons, in which the sum over t
initial one-particle states is efficiently calculated by usi
random vectors. The advantage of this method, compare
the Chebyshev polynomial method by Wang and Zunge
calculate optical absorption of noninteracting electrons@14#,
is that our method can calculate not only the imaginary p
but also the real part of the linear response functions at
same time, and that it can calculate them without any in
output~I/O! of state vectors on external storage. As a res
our method can calculate much larger systems than Wa
method. The Chebyshev polynomial method of degreeM
should storeO(M ) state vectors of sizeO(N) on external
storage to make the table ofO(M2) generalized Chebyshe
momentsLm,m8 and may take a very long I/O time. Th
application of this method to photonic band structures, s
con nanocrystallites, and periodic structures of chaotic s
tems will be presented elsewhere@49–51#.
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